Using lagged covariances in data assimilation
نویسنده
چکیده
This paper describes a novel method to incorporate significantly time-lagged data into a sequential variational data assimilation framework. The proposed method can assimilate data that appear many assimilation window lengths in the future, providing a mechanism to gradually dynamically adjust the model towards those data. The method avoids the need for an adjoint model, significantly reducing computational requirements compared to standard four-dimensional variational assimilation. Simulation studies are used to test the assimilation methodology in a variety of situations. The use of lagged covariances is shown to provide robust improvements to the assimilation quality, particularly if data at multiple lags are used to influence the cost function in each window. The methodology developed can be used to improve contemporary global reanalyses by incorporating time-lagged observations that may otherwise not be exploited to their
منابع مشابه
Ensemble-based atmospheric data assimilation
Ensemble-based data assimilation techniques are being explored as possible alternatives to current operational analysis techniques such as threeor four-dimensional variational assimilation. Ensemble-based assimilation techniques utilise an ensemble of parallel data assimilation and forecast cycles. The background-error covariances are estimated using the forecast ensemble and are used to produc...
متن کاملUsing Improved Background-Error Covariances from an Ensemble Kalman Filter for Adaptive Observations
A method for determining adaptive observation locations is demonstrated. This method is based on optimal estimation (Kalman filter) theory; it determines the observation location that will maximize the expected improvement, which can be measured in terms of the expected reduction in analysis or forecast variance. This technique requires an accurate model for background error statistics that var...
متن کاملSuboptimal Schemes for Atmospheric Data Assimilation Based on the Kalman Filter
This work is directed toward approximating the evolution of forecast error covariances for data assimilation. We study the performance of di erent algorithms based on simpli cation of the standard Kalman lter (KF). These are suboptimal schemes (SOS's) when compared to the KF, which is optimal for linear problems with known statistics. The SOS's considered here are several versions of optimal in...
متن کاملEstimating Forecast Error Covariances for Strongly Coupled Atmosphere–Ocean 4D-Var Data Assimilation
Strongly coupled data assimilation emulates the real-world pairing of the atmosphere andocean by solving the assimilation problem in terms of a single combined atmosphere–ocean state. A significant challenge in strongly coupled variational atmosphere–ocean data assimilation is a priori specification of the cross covariances between the errors in the atmosphere and ocean model forecasts. These c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017